
Static Typing in
Python With

MyPy
Amitosh Swain Mahapatra

Product Engineer, Gojek Tech

$ whoami
● Product Engineer @ Gojek
● Contributes to Open Source, makes cool

things
● Sometimes draws
● Find my code on Github @ agathver
● Catch me on Twitter @agathver
● Lives in Bangalore, India

Agenda
● What is static typing
● Features of Python static typing
● Duck Typing
● How to use typings in your project

What is Static
Typing
Let’s get the boring stuff out of the way before we
go ahead.

What is Static Typing
● You know what are the parameters and what is

being returned by a method
● What kind of object does a variable hold
● What are the methods and properties does an

object of a given type have
● All these information is known at compile-time

Example: len() always takes a Sequence as input and
returns an integer

Static Typing in Python
- Python is dynamically typed, which is powerful but

frequently error prone.
- You can pass anything anywhere – “duck typing”
- Programmers felt the need to specify a set of

expectations for a method return value or
argument

- PEP-484 was born.
- Allowed optional type-hints (based on

annotations)
- No runtime type checking, Python remains weakly

typed in its core, unlike Java

https://www.python.org/dev/peps/pep-0484/

Duck
Typing

If it walks like a duck and
quacks like a duck, it’s a

duck

This is a bufflehead duck (below)

- It quacks
- Has webbed feet

Hence, it’s a duck

This is a mallard (above)

- It quacks
- Has webbed feet

Hence, it’s a duck

Duck
Typing

The Story of the Duck
Simulator

- You and several teams are building a multi-billion dollar
duck simulator to predict how ducks will change the
world

- You are not just experimenting with duck, but several
duck-like birds, like mallards

- You have multiple teams, one building the simulation and
others simulating the attributes of ducks, mallards etc.

- Since ducks and mallards are quite similar, your simulator
just treats everything as “Ducks” and it works. For now.

Teams are busy building
ducks...

- You decided to implement fly()in the simulator, mailed
the change in spec to every team

- Every team implemented the change except the team
handling the Fuegian Steamer, because the ducks, well
they don’t fly.

- Their tests passed (as they test with mocks) and you
decided to run the simulation with all the ducks
combined.

- Simulation crashed, your lab caught fire, Cthulhu arrived

With big teams and
big code bases,
mistakes like this
may happen

Your Brain can only store so much information. So
why not automate this.

MyPy
MyPy is a static type-checker for Python

using PEP-484 type annotations. It runs as
part of your build / lint process and has 0

runtime overhead

13

How to use types in
Python
from typing import Sequence

def do_magic(iterable: Sequence) -> int:

 # ... some magic happens here

 return 42

Describes a method that takes a Sequence,a type that implements

__iter__ and returns an integer

@dataclass

class InventoryItem:

 """Class for keeping track of an item in inventory."""

 name: str

 unit_price: float

 quantity_on_hand: int = 0

 def total_cost(self) -> float:

 return self.unit_price * self.quantity_on_hand

Defines a class with properties name, unit_price and
quantity_on_hand as a string, float and int respectively.

You can also describe variables, but that’s generally
unnecessary

variable: str = "Hello"

The Python type
system
Classes

Any Python class like int,
str, Path, Logger etc. can
be used as a type for a
method, field, return or a
variable

Compile-type only with
runtime type
information

Python is still, at its core
a dynamic typed
language.

Generics

Python types support
Generics. Few inbuilt
classes have been
generified using classes
from typings like
List[str], Dict[str, int]

Inheritance-aware

The implementation is a
full implementation of
inheritance with LSP
mostly-preserved

Protocols / Interfaces

With PEP 544 (Py 3.8)
we have structural static
typing or protocol. It’s
like an implicitly
implemented interface

How to use types
- Python >= 3.6 (3.8 for Protocols)
- Mypy

● Typed python is not a all-or-nothing feature, you
can incrementally add typings as you go.

● Even without mypy or pytest-mypy, type hints will
greatly improve your IDE’s code completion

● You can run typed code just as regular python
without any modifications or build processes.

Running MyPy
mypy <module_name>

- Include mypy as part of your build step CI
- MyPy will parse and print out errors if any.

Unlike Typescript, Python doesn’t require preprocessing of
files to remove type annotations, they are fully recognized by
the interpreter and also available in the run-time with
get_type_hints()

What Python Type
System is not
1. No run-time type checking
2. No impact on performance
3. Doesn’t need any extra compilation step
4. Is not a new language like Typescript, type-annotated

python is valid Python which is accepted by Python
interpreters

5. Doesn’t force you to use types everywhere

Some interesting usage
of Python Types
1. Pydantic is a validator that is fully described by Python

types, annotations and decorators
2. FastAPI is a web framework that describes it’s contract

through types
3. Mypyc compiles type-annotated python to

cython-based native code

Beyond types
● Slots help in enforcing some of the static typeness

in runtime and greatly helps in memory usage
● Retype is a tool for automatically typing a large

python codebase
● Cyton creates compiled extensions which are very

fast from a language very similar to python

That’s it!

Any questions?
You can find me at:

@agathver

asm@amitosh.com

