L)

;'- g ‘,' &
- - .
.ﬂ. .,.-;.} ! .\

-
'f L)

e !‘, B

Python With

Amitosh Swain Mahapatra
Product Engineer, Gojek Tech

~

. PN
< 7S
p Zu > A
», ’
e

S whoami

Product Engineer @ Gojek

Contributes to Open Source, makes cool
things

Sometimes draws

Find my code on Github @ agathver
Catch me on Twitter @agathver

Lives in Bangalore, India

’, o Wha%static typing
Featufeésof Python static typing

Duck Typing ¢
How to'use typings in your project

-

VVNat 1s Static
Typing

Let’s get the boring stuff out of the way before we
go ahead.

ViVhat Is Static Typing

e You know what are the parameters and what is
being returned by a method

e What kind of object does a variable hold

e What are the methods and properties does an
object of a given type have

e Allthese information is known at compile-time

Example: len() always takes a Sequence as input and
returns an integer

Static lyping in Python

- Pythonis dynamically typed, which is powerful but
frequently error prone.

- You can pass anything anywhere - “duck typing” o

- Programmers felt the need to specify a set of) =
expectations for a method return value or '
argument

- PEP-484 was born.

- Allowed optional type-hints (based on
annotations)

- No runtime type checking, Python remains weakly
typed inits core, unlike Java

https://www.python.org/dev/peps/pep-0484/

This is a bufflehead duck (below)

- It quacks
- Has webbed feet

Hence, it's a duck

" This is a mallard (above)

- It quacks
35 Has webbed feet

"~ Hence, it's a duck

[he Story of the Duck
Simulator

You and several teams are building a multi-billion dol],'éff",""'
duck simulator to predict how ducks will change the =—*%%
world A
You are not just experimenting with duck, but several
duck-like birds, like mallards

You have multiple teams, one building the simulationand __ =
others simulating the attributes of ducks, mallards etc.” s
Since ducks and mallards are quite similar, your simulat##®
just treats everything as “Ducks” and it works. For NOW.

/ - v

leams are busy bullding
ducks...

- You decided to implement 1y ()in the simulator, mailechd
the change in spec to every team T

- Every team implemented the change except the team /. 2%
handling the Fuegian Steamer, because the ducks, well
they don't fly.

- Their tests passed (as they test with mocks) and you
decided to run the simulation with all the ducks
combined.

- Simulation crashed, your lab caught fire, Cthulhu arrived | '7),./'

N2
o

VVITN DIg teams ana
DIg code hases,
mistakes like this
Mmay happen

Your Brain can only store so much information. So
why not automate this.

e ,MyPy is a static type-checker for Python
_ using PEP-484 type annotations. It runs as :
£ j‘part of your build / lint process and has O

D *runtlme overhead 5t '

."47

HOW Lo use types In
PvENon

from typing import Sequence

def do_magic(iterable: Sequence) -> int:
... some magic happens here

return 42

Describes a method that takesa Sequence, a type that implements

__iter__ andreturnsan integer

@dataclass
class InventoryItem:
"""Class for keeping track of an item in inventory."""

name: str
unit_price: float

quantity_on_hand: int = @

def total_cost(self) -> float:

return self.unit_price * self.quantity_on_hand

Defines a class with properties name, unit_price and
quantity_on_hand as a string, float and int respectively.

You can also describe variables, but that's generally
unnecessary

variable: str = "Hello"

[he Python type
system

Classes

Generics

Any Python class like int,
str, Path, Logger etc. can
be used as a type for a

method, field, return or a

variable

Compile-type only with
runtime type
information

Pythonis still, at its core
adynamic typed
language.

Python types support
Generics. Few inbuilt
classes have been
generified using classes
from typings like
List[str], Dict[str, int]

Inheritance-aware
The implementationis a
full implementation of

inheritance with LSP
mostly-preserved

Protocols / Interfaces .- ¥

With PEP 544 (Py 3.8) * o <8
we have structural static =~

typing or protocol. It’s
like an implicitly
implemented interface

OW TO USe types

Python >= 3.6 (3.8 for Protocols)
Mypy

Typed python is not a all-or-nothing feature, you
can incrementally add typings as you go.

Even without mypy or pytest-mypy, type hints will
greatly improve your |IDE’s code completion

You can run typed code just as regular python
without any modifications or build processes.

Running My Py

mypy <module_name>

Include mypy as part of your build step ClI
MyPy will parse and print out errors if any.

Unlike Typescript, Python doesn't require preprocessing of « e %
files to remove type annotations, they are fully recognized byl

the interpreter and also available in the run-time with e
get_type_hints() ES

VVhat Python [ype
System 1s Not

No run-time type checking

No impact on performance

Doesn't need any extra compilation step

|s not a new language like Typescript, type-annotated
pythonis valid Python which is accepted by Python
interpreters

5. Doesn't force you to use types everywhere

N

Some Interesting usage
of Python lypes

1. Pydanticis avalidator that is fully described by Python
types, annotations and decorators

2. FastAPlis aweb framework that describes it's contract
through types

3. Mypyc compiles type-annotated python to
cython-based native code

Sevond types

e Slots helpinenforcing some of the static typeness
in runtime and greatly helps in memory usage

e Retypeisatool for automatically typing a large
python codebase

e C(Cyton creates compiled extensions which are very
fast from a language very similar to python

) .

Any questions?

You can find meat:

@agathver

asm@amitosh.com

