Testing Data Pipelines

Amitosh Mahapatra - PyCon US 2024

$ about

e “Computer Whisperer” / Data Platform Engineer @ Toplyne

o & Paints and rides &, bikes for fun, (both human powered and motorbikes)

e Also active in OSS communities in Python & NodeJS (maintains a very
popular NodeJS module)

e Sometimes codes for fun

 linkedin.com/in/amitosh-swain

7 github.com/recrsn

< recursivefunction.bloqg

http://linkedin.com/in/amitosh-swain
http://github.com/recrsn
https://recursivefunction.blog

Everyone tells you should test because...

e Your changes won't drain your data lake

e (Not saying that you should), but you can refactor to your heart's-content, with
a whiskey-sour in your hand and still not break prod.
e You really, really, really can’t trust how data comes to you

You will thank yourself later

But how?

e How to begin?)\ Caveats
e \What do you test?

e Can | do something better?
The rest of the talk is going to refer

Airflow, but the concepts are generic
enough for you to apply anywhere,
with any tool.

The testing double-pyramid for data pipelines

e Many software engineers preach TDD,
unit testing. Many of those concepts aren’t
straightforward to apply for data
engineering.

e But... don’t discard those yet.

e With careful consideration, we can apply
much of those principles and a few data
specific ones to make sure our data
pipelines keep churning pristine and
accurate data

Testing during SDLC

Automated end-to-end testing

Low effort, high gain

Comprehensive and end-to-end, will touch a lot of moving parts

Slow feedback loop

Costly; Uses real resources

Difficult to set up

Handle differences due to variations in date-time, RNGs etc could be difficult
Run these before deployment

You take several snapshots of real input data and the corresponding output of
your production pipeline.

You run your test pipeline and compare your output.

Snapshot-based end-to-end testing

How to setup test suites?

e Test suites are part of your pipeline code, executing on a test infrastructure,
pipeline failure => test failure. Imperative to set-up alerting.

e Run queries like SELECT ... EXCEPT to compare output to a known stage

e https://qgithub.com/datafold/data-diff is a great tool to simplify comparing tables

e Pandas provide dataframe.diff() to ease data diffing

https://github.com/datafold/data-diff

Unit testing

Quick and focused

Fast; uses mocked dependencies

Treats pipelines as code with behavior

Uses familiar tools like Pytest, Coverage

Run these every time you commit some code

Decompose your data pipelines into smaller chunks of Python code, test the
behavior with Pytest.

Separate the orchestration bits from the business logic and test them
independently

Unit testing

You can test on how queries are generated for certain inputs

You can assert what tasks get invoked with what arguments

You can assert various conditional steps

You can test the behavior of your orchestration layer, without invoking actual
resources

e You can assert your pipeline structure

For example, if using airflow, assert that your DAG is loaded in the DagBag
without errors and has all expected tasks.

A very simple unit test

def test crm users entity (
self,
_mock load meta: MagicMock,
task factory: HubspotSchemaTransformTaskFactory,
) —> None:
actual = task factory.create crm entity(entity=Entity.USERS)

expected = (
"CREATE OR REPLACE TRANSIENT TABLE TOPLYNE_SCHEMA.TOPLYNE_CRM_USERS AS "

"SELECT CAST (CONTACT.ID AS VARCHAR) AS CRM user id, "
"SYSDATE () AS TOPLYNE CREATED AT FROM "
"HUBSPOT.CONTACT AS CONTACT"

sgl compare (
expected=expected,
actual=actual,

Another unit test

def dag():

def assert dag dict equal (source, dag):
assert dag.task dict.keys () == source.keys|()
for task id, downstream list in source.items():
assert dag.has task(task id)
task = dag.get task(task id)
assert task.downstream task ids == set (downstream list)

def test dag (dag) :
assert dag dict equal (
{
"DummyInstruction 0" :
"DummyInstruction 1" :
"DummyInstruction 2" :
"DummyInstruction 3" :

["DummyInstruction 1"],
["DummyInstruction 2"],
["DummyInstruction 3"],
(1,

by
dag,

Functional testing

Testing individual pipeline components (like airflow tasks) in isolation
Runs on a test environment

Uses real resources

Tests if your pipeline input (like queries, dataframe operations) result in
correct transformations

Functional testing how-to?

Setup a test environment

Setup input and output conditions like data, tables as your task needs
Use a test-runner like pytest and execute your pipeline code

You can also utilize APls of your orchestrator to execute a task directly, if
possible

Functional testing

def test crm users entity(self, snowflake executor: SnowflakeExecutor, task factory: TaskFactory,

hubspot: HubspotSchemaTransformTaskFactory,) -> None:
Setup
with snowflake executor.connection() as c:

c.execute sqgl (
"CREATE OR REPLACE TRANSIENT TABLE HUBSPOT.CONTACT AS SELECT 1 AS ID, '2022-01-01'" AS

CREATED AT"
)

task = task factory.query task("hubspot create crm entity",
hubspot.create crm entity(entity=Entity.USERS))

with snowflake executor.connection() as c:
c.execute (task)

Validate
with snowflake executor.connection() as c:
actual = c.fetch pandas df ("SELECT * FROM HUBSPOT.CONTACT")
expected = pd.DataFrame ({"ID": [1], "CREATED AT": [date parse("2022-01-01")],1})

pd.testing.assert frame equal (actual, expected)

Continuous Testing & Monitoring

Why?

e Data is unclean and unpredictable

e Your users need to trust the data you generate

e You may have written a perfect pipeline, but it will break down if data does not
adhere to your assumptions

e Having a strongly consistent data model is not possible as scale

Hence, data pipelines must also guarantee data quality

Data Quality Testing

e Check the data model

o Are all key-references valid?

e Check invariants
o Is the input and output as expected?
o Was the input cleaned and sanitized as expected?
o Do we have unexpected nulls or duplicates?

e Run statistical checks

o Did the distribution of values change (too many new entries from a new country)
o Did the input and output rows change drastically
o Did number of orphaned records change?

Data Quality Testing: How-to?

e Testing in pipeline
o At the end of each pipeline add a validation task
m validating your data model
m Asserting invariants like not-null, duplicates, counts
e TJesting outside the pipeline
o Run a dedicated job checking for distributions, input / output count and report deviations
e TJools:

o Soda Core
o Great expectations

What do we do at Toplyne?

e Toplyne processes several hundred terabytes of data from many different
customers with wildly different data sources to generate predictions for sales
and marketing teams

e Sales and marketing teams use information from Toplyne to power their sales
and growth strategies

e Having inaccurate data has direct business implications for us and our
customers

We have a framework for abstracting Airflow related code from data pipeline
logic

We unit test for every component of our pipelines with a mocked Airflow
executor

Before merging code, we run functional tests for each component on a test
environment

We run end-to-end tests for every pipeline before deployment

We have an in-house framework called Litmus, build over soda core to run
data quality tests on demand and in schedule

